L298n datasheet на русском

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Главное меню

Драйверы шагового двигателя: униполярный, биполярный, L298N.

Как правило, логические сигналы для управления шаговым двигателем формирует микроконтроллер. Ресурсов современных микроконтроллеров вполне хватает для этого даже в самом ”тяжелом” режиме – микрошаговом.

Для подключения шаговых двигателей через слаботочные логические сигналы микроконтроллеров необходимы усилители сигналов – драйверы.

В функцию драйверов входит:

  • обеспечение необходимого тока и напряжения на фазных обмотках двигателя;
  • коммутация обмоток;
    • включение;
    • выключение;
    • смена полярности;
  • защита коммутирующих элементов от напряжения самоиндукции обмоток.

Речь в этой статье идет о простых драйверах, достаточных для большинства приложений. Существуют драйверы с гораздо большими возможностями:

  • обеспечение быстрого нарастания тока при включении и быстрого спада при выключении;
  • уменьшение тока для фиксации положения остановленного двигателя;
  • защитные функции;
  • формирование тока и напряжения обмоток для микрошагового режима;
  • и многие другие.

Схемы таких драйверов достаточно сложные, а в этих функциях в большинстве приложениях нет необходимости.

По схеме подключения шаговые двигатели делятся на униполярные и биполярные. Драйверы для этих двух вариантов двигателей принципиально отличаются.

Драйвер униполярного шагового двигателя.

В униполярном режиме могут работать двигатели, имеющие следующие конфигурации обмоток.

Напомню принцип управления униполярным шаговым двигателем. Четыре обмотки с общим проводом, подключенным к одному полюсу источника питания. Если другие выводы обмоток последовательно коммутировать к другому полюсу источника, то ротор двигателя будет вращаться.

Для коммутации обмоток таким способом достаточно всего четырех ключей, замыкающих обмотки на землю. Схемы коммутации обмоток двух предыдущих вариантов двигателей выглядят так.

Если последовательно замыкать ключи 1, 2, 3, 4, то ротор двигателя будет вращаться.

Схема драйвера униполярного шагового двигателя.

Практически ключи можно выполнить на биполярных транзисторах, но предпочтительнее использовать низкопороговые MOSFET транзисторы. Я применяю транзисторы IRF7341. Это MOSFET транзисторы с параметрами:

  • максимально допустимый ток 4 А;
  • предельное напряжение 55 В;
  • сопротивление в открытом состоянии 0,05 Ом;
  • порог включения 1 В;
  • выполнены в миниатюрном корпусе SO-8;
  • в корпусе два транзистора.

Крайне удобный вариант для использования в драйвере униполярного шагового двигателя.

  • Нет необходимости в радиаторах охлаждения ключей;
  • очень низкое падение напряжения на открытом транзисторе;
  • малые размеры;
  • всего два 8ми выводных корпуса для драйвера двухфазного шагового двигателя.

На биполярных транзисторах ключи с такими параметрами создать не возможно. Есть много других вариантов MOSFET транзисторов для ключей, например IRF7313 ( 6 А, 30 В, 0,029 Ом).

Схема ключа на MOSFET транзисторе для одной фазы выглядит так.

Ключ управляется непосредственно от микроконтроллера логическими уровнями KMOП или TTL ( 0 / +5 В). При управляющем сигнале высокого уровня (+5 В) ключ открыт, и через обмотку фазы идет ток. Диод шунтирует обмотку двигателя в обратном направлении. Он необходим для защиты транзистора от бросков напряжения самоиндукции при выключении фазы. Для управления двигателями на значительных скоростях вращения, лучше использовать высокочастотные диоды, например, FR207.

Вот фрагмент схемы подключения униполярного шагового двигателя к микроконтроллеру.

Защиты от коротких замыканий в этой схеме нет. Реализация защиты значительно усложняет драйвер. А замыканий обмоток шаговых двигателей практически не бывает. Я не встречался с таким явлением. Да и на фоне неприятности по поводу сгоревшего дорогого двигателя, замена транзистора не выглядит проблемой.

Кстати, механическое заклинивание вала шагового двигателя не вызывает недопустимых токов в ключах драйвера и защиты не требует.

А это изображение платы контроллера униполярного шагового двигателя с PIC контроллером фирмы Microchip.

Простая плата с восьми разрядным микроконтроллером PIC18F2520 управляет:

  • двумя шаговыми двигателями с током фазы до 3 А;
  • двумя ШИМ ключами для электромагнитов;
  • считывает состояние 4х датчиков;
  • обменивается данными по сети с центральным контроллером.

Несмотря на простоту контроллера, реализованы следующие режимы управления:

  • полно-шаговый, одна фаза на полный шаг;
  • полно-шаговый, две фазы на полный шаг;
  • полу-шаговый;
  • фиксацию положения двигателя при остановке.

К достоинствам управления шаговым двигателем в униполярном режиме следует отнести:

  • простой, дешевый, надежный драйвер.
  • в униполярном режиме крутящий момент примерно на 40 % меньше по сравнению с биполярным режимом.

Драйвер биполярного шагового двигателя.

В биполярном режиме могут работать двигатели, имеющие любые конфигурации обмоток.

У биполярного двигателя по одной обмотке для каждой фазы. Обычно две обмотки AB и CD. В первых двух вариантах четыре обмотки соединяются так, что получается две. Обмотки по очереди подключаются к источнику питания в одной полярности, затем в другой.

Драйвер биполярного двигателя должен обеспечивать сложную коммутацию. Каждая обмотка:

  • подключается в прямой полярности к источнику напряжения;
  • отключается от источника напряжения;
  • подключается с противоположной полярностью.

Схема коммутации одной обмотки биполярного двигателя выглядит так.

Для обеспечения двух полярных коммутаций от одного источника питания требуется 4 ключа. При замыкании 1 и 2 ключей обмотка подключается к источнику питания в прямой полярности. Замыкание 3 и 4 ключей подает на обмотку обратную полярность напряжения.

Сложность драйвера биполярного шагового двигателя вызвана не только большим числом ключей ( 4 ключа на обмотку, 8 ключей на двигатель), но и:

  • сложное управление верхними ключами ( 1 и 4) от логических сигналов “привязанных” к земле;
  • проблемы со сквозными токами при одновременном открывании ключей одного плеча ( 1,3 или 2,4).

Сквозные токи могут возникать из-за не одинакового быстродействия нижнего и верхнего ключа. К примеру, нижний ключ уже открылся, а верхний – не успел закрыться.

Схема драйвера биполярного шагового двигателя.

Реализовать схему драйвера биполярного шагового двигателя на дискретных элементах довольно сложно. Могу показать мою схему, которая подключает биполярный двигатель к униполярному драйверу. Эта схема используется для управления биполярными двигателями от контроллера, приведенного в качестве примера в предыдущей главе.

Схема достаточно простая. Проблема сквозных токов решается за счет резисторов 0.22 Ом в коммутируемых цепях. В момент коммутаций MOSFET транзисторов, верхний и нижний ключ оказываются одновременно открытыми на короткое время. Эти резисторы и ограничивают сквозной ток. К сожалению, они ограничивают и рабочий ток двигателя. Поэтому, несмотря на мощные транзисторы, драйвер по такой схеме можно использовать для токов коммутации не более 2 А. Схема не требует диодов для защиты от эдс самоиндукции обмоток, потому что эти диоды интегрированы в MOSFET транзисторы.

Читать еще:  Asus zenfone 3 max x008d характеристики

Гораздо удобнее и практичнее использовать интегральные драйверы биполярного шагового двигателя. Самым распространенным из них является микросхема L298N.

Драйвер биполярного шагового двигателя L298N.

Описания этой микросхемы на русском языке практически нет. Поэтому привожу параметры L298N достаточно подробно, по официальным материалам производителя этой микросхемы – компании STMicroelectronics (datasheet l298n.pdf).

L298N это полный мостовой драйвер для управления двунаправленными нагрузками с токами до 2 А и напряжением до 46 В.

  • Драйвер разработан для управления компонентами с индуктивными нагрузками, такими как электромагниты, реле, шаговые двигатели.
  • Сигналы управления имеют TTL совместимые уровни.
  • Два входа разрешения дают возможность отключать нагрузку независимо от входных сигналов микросхемы.
  • Предусмотрена возможность подключения внешних датчиков тока для защиты и контроля тока каждого моста.
  • Питание логической схемы и нагрузки L298N разделены. Это позволяет подавать на нагрузку напряжение другой величины, чем питание микросхемы.
  • Микросхема имеет защиту от перегрева на уровне + 70 °C.

Структурная схема L298N выглядит так.

Микросхема выполнена в 15ти выводном корпусе с возможностью крепления радиатора охлаждения.

Назначение выводов L298N.

Обзор драйвера мотора на L298N

Автор: Сергей · Опубликовано 20.12.2018 · Обновлено 14.10.2019

Одним из самых простых и недорогх способов управления двигателями постоянного тока является модуль L298N Motor Driver с Arduino. Он может контролировать скорость и направление вращения двух двигателей постоянного тока, а так же управлять биполярным шаговым двигателем (типа NEMA 17).

Технические параметры

► Напряжение питания логики модуля: 5 В
► Потребляемый ток встроенной логики: 36 мА
► Напряжение питания драйвера: 5 В – 35 В
► Рабочий ток драйвера: 2 А (пиковый ток 3 А)
► Габариты: 43.5 мм х 43.2мм х 29.4мм

Общие сведения

Основной чип модуля это микросхема L298N, состоящая из двух H-мост (H-Bridge), один для выхода A, второй для выхода B. H-мост широко используется в электронике и служит для изменения вращения двигателем, схема H-моста содержит четыре транзистора (ключа) с двигателем в центре, образуя H-подобную компоновку. Принцип работы прост, при одновременном закрытие двух отдельных транзистора изменяется полярность напряжения, приложенного к двигателю. Это позволяет изменять направление вращения двигателя. На рисунке ниже, показана работа H-мостовой схемы.

Для управления скоростью двигателя постоянного тока используется метод PWM (Широко-импульсной модуляции).

Модуль L298N содержит разъем для подключения питания, ряд перемычек для настройки модуля, два выхода A и B и разъем управления, которые регулируют скорость и направление вращения, назначение каждого можно ознакомится ниже:

Вывод Vss — питание двигателей, от 5 до 35 В;
Вывод GND — общий вывод заземления;
Вывод Vs — питание для логической схемы;
Перемычка ENA — используются для управления скоростью двигателя A;
Вывода IN1 и IN2 — используются для управления направлением вращения двигателя A;
Вывода IN3 и IN4 — используются для управления направлением вращения двигателя B;
Перемычка ENB — используются для управления скоростью двигателя B;
Выходы OUT1 и OUT2 — разъем для двигателя A;
Выходы OUT3 и OUT4 — разъем для двигателя B;

Принципиальная схема модуля L298N

Питание модуля.
Питание модуля L298N осуществляется через трех контактный разъем, шагом 3,5 мм:
Vs — источник питания двигателей, 3B — 35B
GND — земля
Vss — источник питания модуля, 4,5В — 5,5В
Фактически у модуля L298N, есть два контакта питания, а именно. «Vss» и «Vs». От «Vs» питаются двигатели с допустимым напряжением от 5 В до 35 В, а от «Vss» питается логическая схема модуля 4,5В до 5,5В. На плате установлен встроенный стабилизатор напряжения на 5 Вольт (78M05), его можно включить или отключить с помощью перемычки. Когда перемычка установлена, стабилизатор включен и питает логику модуля (Vss) от источника питания двигателя (Vs). При включенном стабилизаторе, вход «Vss» работает как выход и обеспечивает 5В с током 0,5 А. Когда перемычка убрана, стабилизатор отключен и необходимо отдельно подключить питание 5 Вольт на вход Vss.

Внимание! Нельзя установить перемычку, если напряжение двигателя ниже 12 Вольт.

Падение напряжения L298N
Падение напряжения драйвера L298N составляет около 2 В, это связано с внутренним падением напряжения в транзисторах в цепи H-мосте. Таким образом, если мы подключим 12 В к источнику питания двигателя, то двигатели получат напряжение около 10 В. Это означает, что двигатель на 12 В не будет работать с максимальной скоростью, для получения максимальной скорости, напряжение поданное на двигателя должен быть выше напряжения (2 В), чем потребность в фактическом напряжении двигателя. Учитывая падение напряжения на 2 В, если вы используете двигатели 5 В, вам необходимо обеспечить питание 7 В. Если у вас 12-ваттные двигатели, то напряжение питания вашего двигателя должно составлять 14 В.

Управления скоростью
Разъемы управления скоростью ENA и ENB используются для включения и выключения управления скоростью двигателей. Когда перемычка установлена, двигатель вращается с максимальной скоростью. Если необходимо управлять скоростью двигателей, необходимо убрать перемычку и подключить выводы к контактам с поддержкой PWM на Arduino.

Подключение L298N к Arduino (коллекторный двигатель)

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер мотора на L298N (5-35V, 2A) x 1 шт.
► Коллекторный двигатель x 2 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Первым делом необходимо подключить источник питания 12B к двигателям, в примере используется распространенные двигатель постоянного тока, рассчитанные на 3B . . . 12B (применяемые в робототехнике). Учитывая внутреннее падение напряжения на микросхеме L298N, двигатели получат 10 В и будут вращаться не в полную силу.
Далее, нужно подключить 5 вольт на логическую схему L298N, для этого воспользуемся встроенным стабилизатором напряжения, который работает от источника питания двигателя, поэтому, перемычка EN должна быть установлена.
Теперь осталось подключить управляющие провода ENA, IN1, IN2, IN3, IN4 и ENB к шести цифровым выводам Arduino 9, 8, 7, 5, 4 и 3. Обратите внимание, что выводы Arduino 9 и 3 поддерживают ШИМ. Теперь, подключаем двигатели, один к клемме A (OUT1 & OUT2), а другой к клемме B (OUT3 & OUT4). Принципиальная схема подключения приведена ниже.

Читать еще:  Brother dcp 1512r заправка

Осталось подключить Arduino к источнику питания и загрузить скетч.

Драйвер двигателя L298N

  • Обзор
  • Технические характеристики
  • Подключению к плате Arduino
  • Пример использования
  • FAQ

Обзор драйвера L298N

Драйвер L298N используется радиолюбителями для многофункционального управления двигателями постоянного тока. Схема модуля, состоящая из двух H-мостов, позволяет подключать к нему один биполярный шаговый двигатель или одновременно два щёточных двигателя постоянного тока. При этом есть возможность изменять скорость и направление вращения моторов. Управление осуществляется путём подачи соответствующих сигналов на командные входы, выполненные в виде штыревых контактов. На рисунке №1 показан внешний вид модуля с кратким описанием всех его составляющих.

Рисунок №1 – внешний вид модуля L298N

  • OUT1 и OUT2 – разъёмы для подключения первого щёточного двигателя или первой обмотки шагового двигателя;
  • OUT3 и OUT4 – разъёмы для подключения второго щёточного двигателя или второй обмотки шагового двигателя;
  • VSS – вход для питания двигателей (максимальный уровень +35V);
  • GND – общий провод (не забываем соединить с аналогичным входом Arduino. );
  • Vs – вход для питания логики +5V. Через него непосредственно запитывается сама микросхема L298N. Есть ещё второй способ питания, при котором 5V для L298N берётся от встроенного в модуль стабилизатора напряжения. В таком случае на разъём подаётся только питание для двигателей (Vss), контакт Vs остаётся не подключенным, а на плате устанавливается перемычка питания от стабилизатора, который ограничит питающее моторы напряжение до приемлемых 5V.
  • IN1, IN2 – контакты управления первым щёточным двигателем или первой обмоткой шагового двигателя.
  • IN3, IN4 – контакты управления вторым щёточным двигателем или второй обмоткой шагового двигателя.
  • ENA, ENB – контакты для активации/деактивации первого и второго двигателей или соответствующих обмоток ШД. Подача логической единицы на эти контакты разрешает вращение двигателей, а логический ноль – запрещает. Для изменения скорости вращения щёточных моторов на эти контакты подаётся ШИМ-сигнал. Для работы с шаговым двигателям, как правило, на эти контакты ставят перемычки, обеспечивающие постоянную подтяжку к +5V.

На рисунке №2 показана электрическая схема модуля L298N.


Рисунок №2 – электрическая схема модуля L298N

Как видно из вышеприведенной схемы, основным элементом модуля является микросхема L298N, в состав которой входят два полноценных H-моста. Каждый H-мост выполнен в виде сборки из четырёх транзисторных ключей с включённой в центре нагрузкой в виде обмотки двигателя. Такой подход позволяет менять полярность в обмотке и как следствие направление вращения двигателя путём чередования пар открытых и закрытых ключей. Более наглядно этот процесс демонстрирует рисунок №3.

Рисунок №3 – транзисторные мосты Н-типа

На рисунке изображены два транзисторных моста Н-типа. В первом случае на вход IN1 подаётся логическая единица, а на вход IN2 – логический ноль. Так как транзисторы в схеме моста имеют разный тип проводимости, то при таком входном сигнале транзисторы Т1 и Т4 останутся в закрытом состоянии, в то время, как через транзисторы Т2 и Т3 потечёт ток. Ввиду того, что единственный путь протекания тока лежит через обмотку двигателя, то последний окажется подключен правой клеммой к плюсу питания, а левой к минусу. Всё это приведёт к вращению мотора в определённом направлении. Абсолютно противоположная картина показана на нижнем рисунке. Здесь IN3 установлен в логический ноль, а IN4 в логическую единицу. Теперь ток течёт в обратном направлении (левая клемма – плюс, правая – минус), заставляя второй двигатель крутиться в противоположную сторону.

Технические характеристики

  • Напряжение питания логики: 5V;
  • Потребляемый логикой ток: 36mA;
  • Напряжение питания моторов: от 5V до 35V;
  • Рабочий ток драйвера: ;
  • Пиковый ток драйвера ;
  • Максимальная мощность: 20Вт (при температуре 75оС);
  • Диапазон рабочих температур: -25оС…+135оС;
  • Размеры модуля: 43.5 мм х 43.2мм х 29.4мм;

Подключение L298N к плате Arduino

Рисунок №4 – схема подключения двух щёточных двигателей постоянного тока

Следует обратить внимание, что в схеме предусмотрена возможность управления скоростью вращения, поэтому выводы ENA и ENB драйвера подключены к пинам Arduino, способным выдавать ШИМ-сигнал. Arduino питается от отдельного источника 7-12В. Если напряжение питания моторов лежит в этом же диапазоне, то можно объединить питающие цепи в одну общую. Также необходимо следить за тем, чтобы минусовые провода всех элементов схемы были соединены между собой.
Для демонстрации возможностей модуля, напишем скетч, который будет вращать моторы с различной скоростью и периодически менять направления их вращения. Ниже приведена программа с подробными комментариями, которая реализует задуманный алгоритм.

#define PIN_ENA 9 // Вывод управления скоростью вращения мотора №1

#define PIN_ENB 3 // Вывод управления скоростью вращения мотора №2

#define PIN_IN1 7 // Вывод управления направлением вращения мотора №1

#define PIN_IN2 6 // Вывод управления направлением вращения мотора №1

#define PIN_IN3 5 // Вывод управления направлением вращения мотора №2

#define PIN_IN4 4 // Вывод управления направлением вращения мотора №2

uint8_t power = 105; // Значение ШИМ (или скорости вращения)

// Установка всех управляющих пинов в режим выхода

Читать еще:  Nes 15 15 источник питания

// Команда остановки двум моторам

// Вращаем моторы в одну сторону с разной скоростью

analogWrite(PIN_ENA, power); // Устанавливаем скорость 1-го мотора

analogWrite(PIN_ENB, power); // Устанавливаем скорость 2-го мотора

// Задаём направление для 1-го мотора

// Задаём направление для 2-го мотора

delay(3000); // Пауза 3 секунды

power -= 30; // Уменьшаем скорость

В самом верху программы задаются макроопределения всех выводов, используемых в проекте. В функции Setup() все выводы Arduino Nano, участвующие в управлении, задаются в качестве выхода. На выводах IN1-IN4 выставляются логические нули, чтобы двигатели гарантированно не вращались в момент старта программы. В главном цикле, программа обеспечивает вращение двигателей в одном направлении, увеличивая их скорость каждые 3 секунды. Когда разгон вырастает до максимального, моторы начинают вращаться в обратном направлении, постепенно замедляя скорость. На пике сбавления скорости, алгоритм повторяется заново. Как видим, сложного здесь ничего нет. Теперь разберёмся с шаговым двигателем. На рисунке №5 показана схема его подключения к плате Arduino Nano.

Рисунок №5 — схема подключения шагового двигателя к Arduino Nano

В качестве демонстрационной модели использован популярный шаговый двигатель NEMA17. Он способен вращаться с частотой до 60 оборотов в минуту и имеет разрешающую способность 200 шагов на один оборот. Следует обратить внимание, что выводы ENA и ENB должны быть подтянуты к +5V путём установки перемычек на самом модуле. Таким образом управляющему сигналу будет разрешено проходить на обмотки шагового двигателя. Также, в случае использования двигателя NEMA17, напряжение его питания не должно превышать 12V. Ниже приведён пример кода с комментариями, который заставит двигатель вращаться в разные стороны, меняя своё направление после каждого полного оборота. В программе использована стандартная библиотека Stepper.h, которая значительно упрощает процесс разработки ПО для проектов с шаговыми двигателями.

Пример использования

Модуль L298N применяется в устройствах, где есть необходимость управления двигателями. Такими устройствами могут быть различного рода ЧПУ, 3D принтеры, роботы, механизмы вендинговых аппаратов и т.п. Для того, чтобы глубже вникнуть в тему работы с драйвером, создадим небольшой проект роботизированной платформы, которая будет передвигаться по командам с любого ИК-пульта дистанционного управления. Робот будет иметь два мотор-редуктора, связанных напрямую с колёсами, а также ИК-приёмник, способный воспринимать команды пульта ДУ. В качестве “мозга” выступит плата Arduino Nano. На рисунке №6 показана электрическая схема робота.

Рисунок №6 — электрическая схема робота-машинки

Для приёма управляющих сигналов с ИК-пульта, в проекте будет использоваться популярная микросхема TSOP-1738. Удобство её заключается в том, что она напрямую подключается к плате Arduino и поддерживает большое разнообразие пультов управления. Цифра 38 в конце маркировки означает несущую частоту (кГц), с которой ваш пульт передаёт сигнал. Существует несколько модификаций данной микросхемы на разные несущие частоты. Ниже приведён список возможных вариантов.

  • TSOP-1730 (30 кГц);
  • TSOP-1733 (33 кГц);
  • TSOP-1736 (36 кГц);
  • TSOP-1737 (37.6 кГц);
  • TSOP-1738 (38 кГц);
  • TSOP-1740 (40 кГц);
  • TSOP-1756 (56 кГц);

Следует помнить, что помимо несущей частоты, каждая кнопка пульта дистанционного управления имеет свой уникальный код, который предварительно необходимо считать и вставить в текст основного скетча. В данном проекте будет использоваться всего 4 кнопки: “вперёд”, “назад”, “вправо” и “влево”. Определить коды поможет библиотека IRremote .
Итак, собираем всё по вышеприведенной схеме, устанавливаем библиотеку IRremote, и для начала заливаем в Arduino этот скетч:

После запуска, в мониторе будут отображаться коды клавиш, нажатые на пульте ДУ. Нам необходимо выбрать 4 кнопки для управления движением робота и выписать их коды для дальнейшего использования в основной программе. У меня получилось следующее:

  • Кнопка “Вперёд” — 0xB4B4E21D
  • Кнопка “Назад” — 0xB4B412ED
  • Кнопка “Вправо” — 0xB4B45AA5
  • Кнопка “Влево” — 0xB4B49A65

На этом подготовка к реализации проекта завершена, можно приступать к сборке шасси. Здесь можно дать волю своей фантазии. В моём случае получилось следующее (рисунок №7).


Рисунок №7 — пример реализации шасси для робота

В пластиковом корпусе удалось разместить все необходимые элементы схемы, а именно: источник питания, Arduino Nano и модуль L298N. ИК-приемник TSOP-1738 был вынесен на верх корпуса, чтобы обеспечить надёжную связь с пультом ДУ. Ведущие колёса с моторами закреплены снизу при помощи двухстороннего скотча. В качестве переднего колеса используется поворотный ролик от кресла. На рисунке №8 показан итоговый результат сборки.


Рисунок №8 — робот готов к программированию

Ниже приведён исходный код управления роботом-машинкой с подробными комментариями.

FAQ. Часто задаваемые вопросы

Вопрос: Какое минимальное напряжение можно подавать на вход питания двигателей модуля?
Ответ: Напряжение питания силовой части не рекомендуется опускать ниже 7В. Согласно документации, оно должно быть выше напряжения логики на 2,5В.

Вопрос: Какой ток может обеспечить внутренний стабилизатор 5В?
Ответ: Внутренний 5-вольтовый стабилизатор модуля может выдать ток до 0.5А.

Вопрос: Можно ли управлять выводами ENA и ENB без использования ШИМ?
Ответ: Можно управлять функцией digitalWrite, но в таком случае регулировка скорости будет невозможна. Управление будет сводиться к двум состояниям: вкл./выкл.

Вопрос: Почему двигатель начинает вращаться при ШИМ больше чем 97, а до этого просто стоит на месте? Как сделать так, чтобы скорость могла регулироваться от 0?
Ответ: Разные двигатели имеют разные технические характеристики и как следствие разную стартовую мощность. Поэтому для каждого конкретного случая будет своё минимальное значение ШИМ, при котором двигатель начнёт вращаться с начальной скоростью. Фактическая регулировка от 0 невозможна, так как двигатель попросту не хватит энергии. В таких случаях очень удобно использовать функцию map(). Например, оформить регулировку от 0 до 100% можно следующим образом:

uint8_t speed = 90; // Скорость двигателя в процентах
speed = map(speed, 96, 255, 0, 100); // Диапазон ШИМ 97-255 преобразуем в проценты 0-100
analogWrite(speed);

Ссылка на основную публикацию
Adblock
detector