Arduino ультразвуковой датчик hc sr04

Ультразвуковой датчик расстояния Ардуино HC-SR04

Ультразвуковые датчики расстояния Ардуино очень востребованы в робототехнических проектах из-за своей относительной простоты, достаточной точности и доступности. Они могут быть использованы как приборы, помогающие объезжать препятствия, получать размеры предметов, моделировать карту помещения и сигнализировать о приближении или удалении объектов. Одним из распространенных вариантов такого устройства является датчик расстояния, в конструкцию которого входит ультразвуковой дальномер HC SR04. В этой статье мы познакомимся с принципом действия датчика расстояния, рассмотрим несколько вариантов подключения к платам Arduino, схему взаимодействия и примеры скетчей.

Датчик расстояния в проектах Arduino

Способность ультразвукового датчика определять расстояние до объекта основано на принципе сонара – посылая пучок ультразвука, и получая его отражение с задержкой, устройство определяет наличие объектов и расстояние до них. Ультразвуковые сигналы, генерируемые приемником, отражаясь от препятствия, возвращаются к нему через определенный промежуток времени. Именно этот временной интервал становится характеристикой помогающей определить расстояние до объекта.

Описание датчика HC SR04

Датчик расстояния Ардуино является прибором бесконтактного типа, и обеспечивает высокоточное измерение и стабильность. Диапазон дальности его измерения составляет от 2 до 400 см. На его работу не оказывает существенного воздействия электромагнитные излучения и солнечная энергия. В комплект модуля с HC SR04 arduino также входят ресивер и трансмиттер.

Ультразвуковой дальномер HC SR04 имеет такие технические параметры:

  • Питающее напряжение 5В;
  • Рабочий параметр силы т ока – 15 мА;
  • Сила тока в пассивном состоянии -6 с.

Датчик оснащен четырьмя выводами (стандарт 2, 54 мм):

  • Контакт питания положительного типа – +5В;
  • Trig (Т) – выход сигнала входа;
  • Echo (R) – вывод сигнала выхода;
  • GND – вывод «Земля».

Где купить модуль SR04 для Ардуино

Датчик расстояния – достаточно распространенный компонент и его без труда можно найти в интернет-магазинах. Самые дешевые варианты (от 40-60 рублей за штуку), традиционно на всем известном сайте.

Схема взаимодействия с Arduino

Для получения данных, необходимо выполнить такую последовательность действий:

  • Подать на выход Trig импульс длительностью 10 микросек;
  • В ультразвуковом дальномере hc sr04 подключенном к arduino произойдет преобразование сигнала в 8 импульсов с частотой 40 кГц, которые через излучатель будут посланы вперед;
  • Когда импульсы дойдут до препятствия, они отразятся от него и будут приняты приемником R, что обеспечит наличие входного сигнала на выходе Echo;
  • На стороне контроллера полученный сигнал при помощи формул следует перевести в расстояние.

При делении ширины импульса на 58.2, получим данные в сантиметрах, при делении на 148 – в дюймах.

Подключение HC SR04 к Arduino

Выполнить подключение ультразвукового датчика расстояния к плате Arduino достаточно просто. Схема подключения показана на рисунке.

Контакт земли подключаем к выводу GND на плате Arduino, выход питания соединяем с 5V. Выходы Trig и Echo подсоединяем к arduino на цифровые пины. Вариант подключения с помощью макетной платы:

Библиотека для работы с HC SR04

Для облегчения работы с датчиком расстояния HC SR04 на arduino можно использовать библиотеку NewPing. Она не имеет проблем с пинговыми доступами и добавляет некоторые новые функции.

К особенностям библиотеки можно отнести:

  • Возможность работы с различными ультразвуковыми датчиками;
  • Может работать с датчиком расстояния всего через один пин;
  • Отсутствие отставания на 1 секунду при отсутствии пинга эха;
  • Для простой коррекции ошибок есть встроенный цифровой фильтр;
  • Максимально точный расчет расстояния.

Скачать бибилотеку NewPing можно здесь

Точность измерения расстояния датчиком HC SR04

Точность датчика зависит от нескольких факторов:

  • температуры и влажности воздуха;
  • расстояния до объекта;
  • расположения относительно датчика (согласно диаграммы излучения);
  • качества исполнения элементов модуля датчика.

В основу принципа действия любого ультразвукового датчика заложено явление отражения акустических волн, распространяющихся в воздухе. Но как известно из курса физики, скорость распространения звука в воздухе зависит от свойств этого самого воздуха (в первую очередь от температуры). Датчик же, испуская волны и замеряя время до их возврата, не догадывается, в какой именно среде они будут распространяться и берет для расчетов некоторую среднюю величину. В реальных условиях из-за фактора температуры воздуха HC-SR04 может ошибаться от 1 до 3-5 см.

Фактор расстояния до объекта важен, т.к. растет вероятность отражения от соседних предметов, к тому же и сам сигнал затухает с расстоянием.

Также для повышения точности надо правильно направить датчик: сделать так, чтобы предмет был в рамках конуса диаграммы направленности. Проще говоря, “глазки” HC-SR04 должны смотреть прямо на предмет.

Для уменьшения ошибок и погрешности измерений обычно выполняются следующие действия:

  • усредняются значения (несколько раз замеряем, убираем всплески, потом находим среднее);
  • с помощью датчиков (например, DHT11 или DHT22) определяется температура и вносятся поправочные коэффициенты;
  • датчик устанавливается на серводвигатель, с помощью которого мы “поворачиваем голову”, перемещая диаграмму направленности влево или вправо.

Примеры использования датчика расстояния

Давайте рассмотрим пример простого проекта с платой Arduino Uno и датчиком расстояния HC SR04. В скетче мы будем получать значение расстояния до предметов и выводить их в монитор порта в среде Arduino IDE. Вы сможете легко изменить скетч и схему подключения, чтобы датчик сигнализировал о приближении или отдалении предмета.

Подключение датчика к ардуино

При написании скетча использовалась следующий вариант распиновки подключения датчика:

  • VCC: +5V
  • Trig – 12 пин
  • Echo – 11 пин
  • Земля (GND) – Земля (GND)

Пример скетча

Начнем работу с датчиком сразу с относительного сложного варианта – без использования внешних библиотек.

В данном скетче мы выполняем такую последовательность действий:

  • Коротким импульсом (2-5 микросекунды) переводим датчик расстояния в режим эхолокации, при котором в окружающее пространство высылаются ультразвуковые волны с частотой 40 КГц.
  • Ждем, пока датчик проанализирует отраженные сигналы и по задержке определит расстояние.
  • Получаем значение расстояния. Для этого ждем, пока HC SR04 выдаст на входе ECHO импульс, пропорциональный расстоянию. Мы определяем длительность импульса с помощью функции pulseIn, которая вернет нам время, прошедшее до изменения уровня сигнала (в нашем случае, до появления обратного фронта импульса).
  • Получив время, мы переводим его в расстояние в сантиметрах путем деления значения на константу (для датчика SR04 это 29.1 для сигнала «туда», столько же для сигнала «обратно», что в сумме даст 58.2).

Если датчик расстояния не выполняет считывание сигнала, то преобразование выходного сигнала никогда не примет значения короткого импульса – LOW. Так как у некоторых датчиков время задержки варьируется в зависимости от производителя, рекомендуется при использовании указанных скетчей выставлять его значение вручную (мы это делаем в начале цикла).

Если расстояние составляет более 3 метров, при котором HC SR04 начинает плохо работать, время задержки лучше выставлять более 20 мс, т.е. 25 или 30 мс.

Скетч с использованием библиотеки NewPing

Теперь давайте рассмотрим вариант скетча с использованием библиотеки NewPing. Код существенно упростится, т.к. все описанные ранее действия спрятаны внутри библиотеки. Все, что нам нужно сделать – создать объект класса NewPing, указав пины, с помощью которых мы подключаем датчик расстояния и использовать методы объекта. В нашем примере для получения расстояния в сантиметрах нужно использовать ping_cm().

Пример подключения ультразвукового дальномера HC SR04 с одним пином

Подключение HC-SR04 к Arduino может быть выполнено посредством использования одного пина. Такой вариант пригодится, если вы работаете с большим проектом и вам не хватает свободных пинов. Для подключения вам нужно просто установить между контактами TRIGи ECHO резистор номиналом 2.2K и подключить к ардуино контакт TRIG.

Краткие выводы

Ультразвуковые датчики расстояния достаточно универсальны и точны, что позволяет их использовать для большинства любительских проектов. В статье рассмотрен крайне популярный датчик HC SR04, который легко подключается к плате ардуино (для этого следует сразу предусмотреть два свободных пина, но есть вариант подключения и с одним пином). Для работы с датчиком существуют несколько бесплатных библиотек (в статье рассмотрена лишь одна из них, NewPing), но можно обойтись и без них – алгоритм взаимодействия с внутренним контроллером датчика достаточно прост, мы показали его в этой статье.

Читать еще:  Pixel 1211 02 0 инструкция

Исходя из собственного опыта, можно утверждать, что датчик HC-SR04 показывает точность в пределах одного сантиметра на расстояниях от 10 см до 2 м. На более коротких и дальних дистанциях возможно появление сильных помех, что сильно зависит от окружающих предметов и способа использования. Но в большинстве случаев HC-SR04 отлично справлялся со своей работой.

Как подключить ультразвуковой дальномер HC-SR04 к Arduino

В этой статье мы подключим ультразвуковой дальномер-эхолокатор HC-SR04 к Arduino и научимся с помощью него определять расстояние до цели.

Инструкция по подключению ультразвукового датчика расстояния HC-SR04 к Arduino

Нам понадобится:

  • Arduino UNO или иная совместимая плата;
  • ультразвуковой датчик HC-SR04;
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.

1 Принцип действияультразвукового дальномера HC-SR04

Действие ультразвукового дальномера HC-SR04 основано на принципе эхолокации. Он излучает звуковые импульсы в пространство и принимает отражённый от препятствия сигнал. По времени распространения звуковой волны к препятствию и обратно определяется расстояние до объекта.

Запуск звуковой волны начинается с подачи положительного импульса длительностью не менее 10 микросекунд на ножку TRIG дальномера. Как только импульс заканчивается, дальномер излучает в пространство перед собой пачку звуковых импульсов частотой 40 кГц. В это же время на ножке ECHO дальномера появляется логическая единица. Как только датчик улавливает отражённый сигнал, на выводе ECHO появляется логический ноль. По длительности логической единицы на ножке ECHO («Задержка эхо» на рисунке) определяется расстояние до препятствия.

Принцип действия ультразвукового дальномера HC-SR04

Диапазон измерения расстояния дальномера HC-SR04 – до 4 метров с разрешением 0,3 см. Угол наблюдения – 30°, эффективный угол – 15°. Ток потребления в режиме ожидания 2 мА, при работе – 15 мА.

2 Схема подключения датчика расстояния

Питание ультразвукового дальномера осуществляется напряжением +5 В. Два других вывода подключаются к любым цифровым портам Arduino, мы подключим к 11 и 12.

Схема подключения датчика расстояния HC-SR04 к Arduino Ультразвуковой дальномер HC-SR04 подключён к Arduino

3 Получение дистанции до объекта с датчика HC-SR04

Теперь напишем скетч, определяющий расстояние до препятствия и выводящий его в последовательный порт. Сначала задаём номера выводов TRIG и ECHO – это 12 и 11 пины. Затем объявляем триггер как выход, а эхо – как вход. Инициализируем последовательный порт на скорости 9600 бод. В каждом повторении цикла loop() считываем дистанцию и выводим в порт.

Функция getEchoTiming() генерирует импульс запуска. Она как раз создаёт тот 10-микросекундный импульс, который является триггером для начала излучения дальномером звукового пакета в пространство. Далее она запоминает время от начала передачи звуковой волны до прихода эха.

Функция getDistance() рассчитывает дистанцию до объекта. Из школьного курса физики мы помним, что расстояние равно скорость умножить на время: S = V×t Скорость звука в воздухе 340 м/сек, время в микросекундах мы знаем (переменная duration). Чтобы получить время duration в секундах, нужно разделить его на 1 000 000. Так как звук проходит двойное расстояние – до объекта и обратно – нужно ещё разделить результат пополам. Вот и получается, что расстояние до объекта S = 34000 см/сек × duration / 1 000 000 сек / 2 = 1,7 см/сек / 100, что мы и написали в скетче.

Операцию умножения микроконтроллер выполняет быстрее, чем операцию деления, поэтому :100 я заменил на эквивалентное ×0,01.

4 Библиотека для работы с эхолокатором HC-SR04

Также для работы с ультразвуковым дальномером написано множество библиотек. Например, вот эта библиотека Ultrasonic. Установка библиотеки происходит стандартно: скачать, разархивировать в директорию /libraries/, которая находится в папке с Arduino IDE. После этого библиотекой можно пользоваться.

Установив библиотеку, напишем новый скетч.

Результат его работы тот же – в мониторе последовательного порта выводится дистанция до объекта в сантиметрах.

Если в скетче написать float dist_cm = ultrasonic.Ranging(INC); – дистанция будет отображаться в дюймах.

5 Выводы по работе с сонаром HC-SR04

Итак, мы с вами подключили к Arduino ультразвуковой дальномер HC-SR04 и получили с него данные двумя разными способами: с использованием специальной библиотеки и без.

Преимущество использования библиотеки в том, что количество кода значительно сокращается и улучшается читаемость программы, вам не приходится вникать в тонкости работы устройства и вы сразу же можете его использовать. Но в этом же кроется и недостаток: вы хуже понимаете, как работает устройство и какие в нём происходят процессы. В любом случае, каким способом пользоваться – решать только вам.

Приобрести ультразвуковой дальномер по хорошей цене можно на этом сайте.

Дальномер с помощью датчика HC SR04 и Arduino

Ардуино – уникальная система, представляющая собой пластилин в руках инженера, из которого он может слепить, что пожелает. Возможно это благодаря большому разнообразию датчиков и модулей разных направленностей. От простых чипов, измеряющих силу тока, до вещей вроде Arduino hc hc sr04.

Это специальный датчик, позволяющий, при помощи ультразвуковых волн, измерить расстояние до объекта, на который его направили. Несложно догадаться, что проще всего его применить для создания простого дальномера. Рассмотрим Arduino hc sr04 и какие нюансы в работе с ним стоит учитывать, прежде чем начать собирать проект.

1. Основы сборки дальномера на Ардуино с помощью датчика HC SR04

Если вы собираетесь собрать дальномер на Ардуино, то без HC SR04 просто не обойтись. Ведь именно этот модуль чаще всего применяют в подобных системах из-за его высокой востребованности, по причине простоты работы, доступности и низкой стоимости. При этом точность показаний остаётся на высоте, что очень важно в подобных системах. Из данного чипа можно собрать не только дальномер на Ардуино, но и полноценного робота, который будет чувствовать расстояние до объекта и обходить любое препятствие.

Однако сегодня мы рассмотрим именно вариант с дальномером на Аrduino, так как он идеально подойдёт для новичков в сфере, которые ещё не слишком хорошо разбираются в основах. Если же вы захотите затем модифицировать своё изобретение, то можно научить его моделировать полноценную трехмерную карту помещения, что будет удобно для тех, кто занимается дизайном и конструированием мебели или зданий. Но сначала стоит рассмотреть, как вообще работает данный прибор и какие основы сборки стоит усвоить, прежде чем создать лазерный дальномер на Ардуино своими руками.

Далее в ход вступает программный код, который высчитывает, сколько времени прошло между посланием и возвратом волны, делит его на два и с помощью формул и скорости звука высчитывает усреднённое расстояние до объекта.

Почему усреднённое?

Дело в том, что любой ультразвуковой датчик все равно будет ошибаться на десятые доли метра, связано это с тем, что различные материалы, окружение и прочие переменные могут повлиять на скорость движения и отражения от поверхности звука. А в данном проекте мы берём идеальную систему, которая в реальном мире работать не может.

Можно постараться учесть все эти факторы, но каждую переменную вы все равно не запрограммируете, поэтому наша задача – получить данные, максимально приближённые к показаниям профессиональных приборов, ведь дальномер Ардуино всё ещё далёк от них по точности.

Соответственно, лучше всего применять прибор к гладким и плоским поверхностям, которые не будут нарушать движения УВ, что также ограничивает его функционал. Но благодаря низкому ценнику и удобству работы датчик всё ещё остается достаточно популярным.

2. Что будет в уроке?

Мы соберем дальномер, который будет работать по следующему принципу: при приближении объекта на расстояние менее 4 сантиметров — загорается красный светодиод, иначе горит зеленый.

Достаточно простой пример, в котором мы проверим точность измерения расстояния дальномером hc-sr04. Основа проверки точности станет простая линейка 🙂

3. Инструменты

Чтобы лишний раз не бегать в магазин прямо посреди процесса сборки системы, лучше заранее подготовить все инструменты, что могут вам пригодиться. Так, стоит побеспокоиться, чтобы под рукой были:

  1. Паяльник. Хорошим выбором станут приборы с регулируемой мощностью, их можно приспособить к любой ситуации.
  2. Проводники. Естественно, датчик необходимо будет подсоединять к МК, и для этого не всегда подходят стандартные пины.
  3. Переходник под usb-порт. Если на вашем микроконтроллере нет встроенного порта, побеспокойтесь о том, чтобы его можно было подключить к ПК другим способом. Ведь вам необходимо будет подгружать дополнительные библиотеки и новую прошивку в ваш проект.
  4. Припой, канифоль и прочие мелочи, в том числе изолированное рабочее пространство.
  5. Сам чип и МК, а также, при необходимости, корпус будущего устройства. Наиболее опытные инженеры предпочитают распечатывать оболочку для своих проектов на 3Д принтере, однако, если вы живёте в крупном городе, не обязательно тратиться. Можете поискать компании, дающие в аренду принтеры.
Читать еще:  Im2081 монтажное исполнение электродвигателя

Стоит понимать, что дальномер Arduino относится к приборам бесконтактного типа и способен обеспечивать точные измерения. Но всё же не стоит забывать, что профессиональные устройства используют совершенно другие технологии и проходят длительную калибровку под все материалы, а соответственно, в любом случае, окажутся лучше. Также у нашего проекта будет ограниченный диапазон измерения расстояний, от 0.03 до 4 метров, что подойдёт не во всех случаях.

Но, что хорошо, на работу устройства не оказывается никакого влияния со стороны ЭМ излучений и солнечной энергии. А в комплекте к датчику уже находятся нужные ресиверы и трансмиттеры, которые пригодятся, когда вы будете собирать ультразвуковой дальномер Ардуино.

4. Комплектующие

Так как мы решили пока ничего не паять — оптимальный набор деталей будет следующим:

  • 1 — Arduino UNO R3 (или аналог)
  • 1 — Ультразвуковой датчик расстояния HC-SR04
  • 1 — красный светодиод
  • 1 — зеленый светодиод
  • 2 — резистор 560 Ом
  • 1- макетная плата
  • 8 — проводов-перемычек (папа-папа)
  • 1 — линейка для измерения расстояния

5. Подключение датчика HC SR04

С подключением датчика не должно возникнуть никаких проблем. Достаточно с помощью проводников соединить пин на питание с источником или МК, а ввод и вывод, соответственно, присоединить непосредственно к МК. Воспользуйтесь схемой ниже для сборки схемы:

У самого сенсора SR04 следующие характеристики от которых вам стоит отталкиваться:

  1. Напряжение для питания – 5В.
  2. Работает в цепях с силой тока 15 мА.
  3. Если датчик не используется, то для поддержания его в пассивном состоянии всё ещё требуется до 2 мА.
  4. Угол обзора у модуля небольшой, всего 15 градусов.
  5. Разрешение сенсора – 3 десятых см.
  6. А вот угол для измерений составляет уже приятные 30 градусов.

Также на датчике имеются четыре вывода по стандарту 2.54 мм. В них входит контакт для питания с положительным напряжением +5В, пины для ввода и вывода сигнала и заземление.

В конечном варианте выглядеть устройство должно примерно таким образом:

Код для нашего устройства ниже. Помните, что красный светодиод должен загораться при расстоянии менее 4 см.

Единственное, о чем стоит помнить, – далеко не все функции и библиотеки написаны профессионалами. Многие из них создаются такими новичками, как и вы, соответственно, старайтесь просматривать код, прежде чем заключать, что датчик не работает или выдаёт неправильные данные.

Но значительно лучше будет изучить основы программирования и С++, чтобы в дальнейшем самостоятельно писать многие вещи самому.

7. Запуск и настройка

При первом запуске устройства происходит следующее:

  1. Подается импульс на вход Trig.
  2. В самом датчике сигнал преобразуется в 8 импульсов, у которых частота достигает 40 кГц, их он, соответственно, и посылает вперёд.
  3. Доходя до препятствия, импульсы отражаются и возвращаются на приемник, происходят моментальные расчеты в МК, и вся информация подаётся на устройство вывода. В нашем случае – это консоль ПК, но в будущем мы сделаем урок, где данные будут выводиться на LED-экранчик.

При первом запуске мы используем линейку, которая позволит сравнить точность измерений. Запустив устройство, проверьте данные, которые будут выведены в консоли.

Датчик пользуется большой популярностью и всё больше людей пишут свои решения для работы с ним.

Ультразвуковой датчик измерения расстояния HC-SR04

Общие сведения:

Ультразвуковой датчик расстояния HC-SR04 — позволяет определять расстояние до препятствий находящихся в зоне от 2 мм до 4 м.

Спецификация:

  • Входное напряжение: 5 В
  • Потребляемый ток в режиме ожидания: до 2 мА
  • Потребляемый ток в режиме измерений: до 15 мА
  • Частота ультразвука: 40 кГц
  • Измеряемая дальность: 3 … 400 см
  • Точность измерения: от 0,3 см
  • Угол измерения: до 15°
  • Рабочая температура: -30 … 80 °С
  • Габариты: 45x20x15 мм

Подключение:

  • При работе с библиотекой iarduino_HC_SR04, выводы TRIG и ECHO датчика можно подключать к любым выводам Arduino.

  • При работе с библиотекой iarduino_HC_SR04_int, вывод TRIG датчика подключается к любому выводу Arduino, а вывод ECHO датчика нужно подключить только к тому выводу Arduino, который использует внешнее прерывание.

Вы можете узнать, какие выводы Вашей Arduino используют внешние прерывания, воспользовавшись скетчем описанным в разделе Wiki — определение аппаратных выводов Arduino .

Входное напряжение 5 В постоянного тока, подаётся на выводы Vcc и GND датчика.

Подробнее о датчике:

Если подать положительный импульс на вход датчика TRIG длительностью 10 мкс, то датчик отправит звуковую волну (8 импульсов на частоте 40 кГц — ультразвук) и установит уровень логической «1» на выходе ECHO. Звуковая волна отразится от препятствия и вернётся на приёмник датчика, после чего он сбросит уровень на выходе ECHO в логический «0» (то же самое датчик сделает, если звуковая волна не вернётся в течении 38 мс.) В результате время наличия логической «1» на выходе ECHO равно времени прохождения ультразвуковой волны от датчика до препятствия и обратно. Зная скорость распространения звуковой волны в воздухе и время наличия логической «1» на выводе ECHO, можно рассчитать расстояние до препятствия.

Расстояние вычисляется умножением скорости на время (в данном случае скорости распространения звуковой волны V, на время ожидания эха Echo). Но так звуковая волна проходит расстояние от датчика до объекта и обратно, а нам нужно только до объекта, то результат делим на 2:

L = V * Echo / 2

  • L – расстояние (м);
  • V – скорость звука в воздухе (м/с);
  • Echo – время ожидания эха (с).

Скорость звука в воздухе, в отличии от скорости света, величина не постоянная и сильно зависит от температуры:

V 2 = γ R T / M

  • V – скорость звука в воздухе (м/с)
  • γ – показатель адиабаты воздуха (ед.) = 7/5
  • R – универсальная газовая постоянная (Дж/моль*K) = 8,3144598(48)
  • T – абсолютная температура воздуха (°К) = t°C + 273,15
  • M – молекулярная масса воздуха (г/моль) = 28,98

Подставив в формулу известные значения γ, R, M, получим:

V ≈ 20,042 √T

  • T – абсолютная температура воздуха (°К) = t°C + 273,15

Осталось объединить формулы вычисления V и L, и перевести L из м в см, Echo из с в мкс, T из °К в °C, получим:

L ≈ Echo √(t+273,15) / 1000

  • L – расстояние (см)
  • Echo – время ожидания эха (мкс)
  • t – температура воздуха (°C)

Для работы с датчиком, нами разработаны две библиотеки iarduino_HC_SR04 и iarduino_HC_SR04_int, синтаксис обеих библиотек одинаков. Они сами рассчитывают все значения и возвращают только расстояние в см. Температура по умолчанию установлена в 23°C, но её можно указывать. Работа с библиотеками и их функции описаны ниже.

Для работы с датчиком, нами разработаны две библиотеки iarduino_HC_SR04 и iarduino_HC_SR04_int, синтаксис обеих библиотек одинаков.

  • Преимуществом библиотеки iarduino_HC_SR04 является то, что датчики можно подключать к любым выводам Arduino, а недостаток заключается в том, что библиотека ждёт ответа от датчика, который может длиться до 38 мс.
  • Преимуществом библиотеки iarduino_HC_SR04_int является то, что она не ждёт ответа от датчиков (не приостанавливает выполнение скетча), но выводы ECHO датчиков нужно подключать только к тем выводам Arduino, которые используют внешние прерывания.

Подробнее про установку библиотеки читайте в нашей инструкции.

Определение расстояния с использованием библиотеки iarduino_HC_SR04:

Определение расстояния с использованием библиотеки iarduino_HC_SR04_int:

Результат работы обоих примеров:

Из примера видно, что если во время измерений не учитывать температуру воздуха, то можно получить результаты с высокой погрешностью.

Читать еще:  Honor 7c индикатор событий

Описание основных функций библиотек:

Библиотека iarduino_HC_SR04, как и библиотека iarduino_HC_SR04_int , имеет только одну функцию — distance() .

Подключение библиотеки iarduino_HC_SR04:

Подключение библиотеки iarduino_HC_SR04_int:

Функция distance():

  • Назначение: Возвращает расстояние до препятствия в см
  • Синтаксис: distance( [ ТЕМПЕРАТУРА ] )
  • Параметры: ТЕМПЕРАТУРА — необязательный параметр, целое число, от -128 °C до +127 °C, по умолчанию +23 °C
  • Возвращаемые значения: long расстояние в см
  • Пример:

Усреднение показаний:

Переменная averaging типа long является коэффициентом усреднения выводимых показаний.
Данной переменной можно присвоить положительное целое число (0-без усреднений — значение по умолчанию, 1-слабое усреднение, . 10-нормальное усреднение, . 100-сильное усреднение, . 1000-чрезмерное усреднение, . ).

При снятии показаний без усреднений (по умолчанию) мы можем получать «прыгающие» значения. Например, на дистанции в 2 метра до препятствия, показания могут колебаться от 198 до 202 (это может быть причиной многих факторов: геометрия отражающей поверхности, колебания температуры и состава воздуха, колебания питания датчика, посторонние шумы и многое другое). Для устранения этих факторов можно однократно указать коэффициент усреднения, чем выше его значение, тем плавнее будут меняться данные возвращаемые функцией distance().

Подключение дальномера HC-SR04 к Arduino

GeekElectronics » Arduino от А до Я » Подключение дальномера HC-SR04 к Arduino

Пошаговая инструкция по подключению ультразвукового дальномера HC-SR04 к Arduino.

Часто в проектах на Arduino необходимо определить расстояние до препятствия. Для этих целей обычно используют инфракрасные или утразвуковые дальномеры.

Под рукой у меня есть только ультразвуковой сонар HC-SR04, поэтому в этой статье я опишу как с ним работать.

Подключение HC-SR04 к Arduino

В модели HC-SR04 есть 4 контакта, которые мы и будем использовать для подключения к Arduino.

  • VCC подключим к +5V на Arduino
  • Trig к цифровому пину 8 на Arduino
  • Echo к цифровому пину 9 на Arduino
  • GND к GND на Arduino

Для наглядности я еще подключил светодиод между GND и 11 цифровым пином Arduino. Если у вас светодиода под рукой не оказалось, то тогда можете использовать светодиод на 13 пине Arduino.

В результате должно получиться что-то подобное:

Теперь нам надо загрузить скетч. Он написан так, что при расстоянии менее 50 сантиметров наш светодиод загорается, а в окне Serial Monitor выводилось расстояние в сантиметрах.

const int Trig = 8;
const int Echo = 9;
const int ledPin = 11; // 13 – если будете использовать встроенный в Arduino светодиод

void setup()
<
pinMode(Trig, OUTPUT);
pinMode(Echo, INPUT);
pinMode(ledPin, OUTPUT);

unsigned int time_us=0;

unsigned int distance_sm=0;

void loop()
<
digitalWrite(Trig, HIGH); // Подаем сигнал на выход микроконтроллера
delayMicroseconds(10); // Удерживаем 10 микросекунд
digitalWrite(Trig, LOW); // Затем убираем
time_us=pulseIn(Echo, HIGH); // Замеряем длину импульса
distance_sm=time_us/58; // Пересчитываем в сантиметры
Serial.println(distance_sm); // Выводим на порт

Демонстрация работы

  • Автор: source
  • Миниатюра:
  • Рубрика: Arduino от А до Я
  • Опубликовано: 26.12.2017
  • Обновлено: 26.12.2017
  • Комментариев: 29
  • Просмотров: 54 615

    Похожие записи

    Комментариев: 29

    Спасибо за статью! Всё работает, комментарии в программе дают ясное представление о алгоритме работы.

    Спасибо!
    Легко и понятно.

    Такой вопрос. Код работает на любом дальномере или именно на этом?

    Только на HC-SR04

    А для работы с другими видами в скетче что изменить надо? или это зависит от модели дальномера?

    От модели. В разных датчиках могут быть использованы разные шины передачи данных.

    Замечательная статья!! Благодарю! А то голову изломал — сори не программист =).
    Удачи в Ваших проектах!

    добрый день, такой вопрос, а какова минимальная величина объекта обнаружения??интерес составляет например с помощью таких сенсоров нескольких собрать схему которая будет определять расположение в пространстве обьекта

    не могу вам ответить
    на мелких объектах не проверял

    Спасибо.
    Очень логично и без излишеств.

    Спасибо большое! Всё работет как надо, пояснения оч. в тему.

    Спасибо, все понятно! А я думал нужно библиотеку подключать Ultrasonic. А какие возможности она дает?

    Ultrasonic, как и любая другая библиотека создана для сокращения количества кода.

    Подскажите пожалуйста, вместо диода можно подключить реле какое-нибудь, например чтобы моторчик крутило? Спасибо.

    Спасибо за статью. Все работает. Но я еще прикрутил дисплей 128*64 пишет расстояние и рисует линию — это так для визуализации)))

    а как вы это сделали можно подробно пожалуйста !?

    Спасибо автору сайта. На днях получил свой первый Arduino Uno и собрал в тот же день первый свой проект с помощью этой статьи. Потом добавил звуковое оповещение в зависимости от дистанции — дети были счастливы при попытке незаметно проскользнуть на «охраняемую» территорию 🙂

    Подключил к ArduinoMega два таких датчика. Соответственно изменил код. Второй датчик всегда показывает 0. Экспериментальным путем выяснил, что работает только тот из 2 датчиков, для которого раньше прописана функция pulseIn в скетче. Не подскажете, как решить проблему?

    Код покажи — аборт по телефону трудно делать.

    Подскажите код что бы удерживла 20сек и сробатывала толь ко в темноте.

    Удерживала что. После того как датчик обнаружит присутствие, то зажигает светодиод на 20 сек., я правильно понял. для этого нужно сделать задержку сразу после того как зажигается светодиод. А что бы срабатывал в темноте, необходимо использовать фоторезистор.

    На ECHO постоянно висит в 5В, несмотря на все старания: я перепробовал все выходы дурино, отпаивал R1 и притягивал ECHO к нулю — то же самое.
    Осциллографа у меня нет, триггер на ECHO делать не хочется — уверен: там постоянно +5В.
    Грешу на датчик.
    Есть иные мнения?
    Поделитесь пож-ста.

    Привет подскажите как перевести значение не в сантиметры а в проценты
    Скажем что 1150 см = 0%, а 15 см= 100% ну дальше как то так

    Был ли у кого-нибудь опыт работы с несколькими датчиками? По поиску все сводится с сдвиговым регистрам и мультиплексорам.

    Кому интересно — некоторое время игрался с датчиками оценивая точность измерения ( с шагом 1 см). Итог:
    — в 90% случаев, начиная от 4 см погрешность

    -1 см. Т.е как-бы с запасом.
    — если датчики рядом друг с другом и есть пересечение направлений работы — данные скачут
    — если расстояние до цели больше 60-70 см резко увеличивается частота появления нулевых результатов. Это для меня стало понятно не сразу, но оказалось причиной «зависания» — т.е. сенсор долго ждет сигнала, что воспринимается как зависание, а не получив его выдает 0

    Есть задача: Нужно подключить около 50-ти таких датчиков.
    В связи с чем, не обладая глубокими познаниями, пока что пытаюсь решить следующие вопросы:
    1) Т.к. нужно много входов — берется Arduino Mega. Возможен ли такой вариант работы: каждый выход Echo на каждом датчике получает свой вход на ардуине. В то же время, для экономии выходов — все входы Trig получают сигнал от одного выхода на ардуине. Пробовал с 2-мя датчиками — работает. Жду прихода остальных 48 — к каким проблемам готовиться? В итоге на 50 датчиков: занят 50 входов + 1 выход.
    2) Предполагаю, что на такое количество датчиков будет нужно доп питание для сенсоров — из каких пропорций исходить? Что посоветуете?
    3) Уже потратил время на входные сдвиговые регистры. Принцип работает, но с датчиками типа 0/1. Для hs-sr04 в таком виде не подходит — выдает 0 (при минимальном расстоянии)/1. НО! Т.к. при стандартном подключении используются цифровые входы — предполагаю что и в случае со сдвиговыми регистрами есть способ заставить это работать. при наличии головы)) Так ли это?
    4) какие минусы решение за счет увеличения количества портов (-> mega 2560) имеет по сравнению с использованием мультиплексоров/СР. или можно так работать?

    Здравствуйте. А как сделать так, чтобы светодиод зажигался плавно?

Ссылка на основную публикацию
Adblock
detector