3 Разрядность регистра это

Основные характеристики микропроцессоров

Характеристики универсальных микропроцессоров:

1. Разрядность (мощность) — определяется максимальной разрядностью целочисленных данных, обрабатываемых за 1 такт, то есть фактически разрядностью арифметико-логического устройства (АЛУ). Количество бит в машинном слове называется разрядностью. Чем больше разрядность, т.е. чем длиннее машинное слово, тем быстрее передаётся и обрабатывается информация, тем быстрее работает компьютер.

Применительно к микропроцессору, различают три вида разрядности:

1. Разрядность регистров микропроцессора;

2. Разрядность шины данных;

3. Разрядность шины адреса.

Разрядность регистров — это длина машинного слова внутри микропроцессора. Разрядность этого вида диктуется вместимостью внутренних ячеек памяти процессора- вместимостью регистров. Когда классифицируют микропроцессор и употребляют термин «разрядность микропроцессора», то подразумевается внутренняя разрядность, поскольку именно разрядность регистров определяет эффективность обработки данных микропроцессором, диктует диапазон допустимых значений операндов.

Разрядность шины данных. Под шиной данных понимается группа проводников, по которым от микропроцессора к другим устройствам компьютера передаются данные. Разрядность шины данных – это число проводников в ней. Этот вид разрядности диктует длину машинных слов при передаче информации вне процессора, т.е. это длина «внешнего машинного слова». Длина машинных слов внутри микропроцессора и длина внешнего машинного слова могут не совпадать. Например, первый микропроцессор, устанавливавшийся на персональный компьютер IBM PC (Intel 8088), имел внутреннюю разрядность 16 бит, а длину внешнего машинного слова — всего 8 бит. В его современнике Intel 8086 длина внешнего машинного слова была увеличена до размеров разрядности регистров, т.е. до 16 бит, что дало прирост производительности микропроцессора на 40% при той же тактовой частоте. Схожее несовпадение разрядности компания Intel применила на микропроцессоре 80386SX, а также на всех процессорах Pentium (исключая последние 64-разрядные).

Разрядность шины адреса — это число проводников в адресной шине. По этим проводникам от микропроцессора к оперативной памяти передаётся информация для определения ячеек памяти, к которым надо получить доступ. Чем шире шина адреса, тем к большему числу ячеек памяти может адресовываться микропроцессор. Адресное пространство микропроцессора, т.е. наибольший теоретически возможный размер оперативной памяти, доступный для данного микропроцессора, определяется величиной 2 n , где n- разрядность адресной шины.

Например, у Intel 8088 и Intel 8086 адресная шина имела 20 проводников. Наибольший размер оперативной памяти у компьютеров с таким микропроцессором был не более 2 20 = 1048 000 байт, т.е. 1 Мбайт. У процессора следующего поколения, Intel 80286, была 24-разрядная шина адреса, что увеличило максимум адресуемой оперативной памяти до 16 Мб. Начиная с Intel 80386, микропроцессоры Intel длительное время имели 32-битную шину адреса и соответственно адресное пространство 4 Гб.

2. Тип ядра и технология производства. Технология определяется толщиной минимальных элементов процессора, — чем более «тонкой» становится технология, тем больше транзисторов может уместиться на кристалле. Кроме этого, переход на новую технологию помогает снизить энергопотребление и тепловыделение процессора, что очень важно для его стабильной работы.

Переход на новую технологию, как правило, влечет за собой и смену процессорного «ядра»

3. Производительность — Производительность процессора измеряется во Флопсах. Флопс — это количество элементарных операций (тактов) выполняемых за 1 секунду с плавающей запятой. Флопс бывает: 1 Флопс = 10 (нулевая степень), 1 Килофлопс = 10*** степени, 1 Мегафлопс = 10****** степени, 1 Гигафлопс = 10********* степени, 1 Террафлопс = 10************ степени.

Пусть у нас имеется процессор AMD Athlon Core 2/3,5 HHz, пусть процессор выполняет 4 операции за 1 такт времени в каждом ядре, вычислим его производительность: 4 х 4 х 3,5 ГГц = 56 (Гигафлопс) или 56 миллиардов операций в 1 секунду.

Надо помнить, что количество тактов выполняемых процессором не всегда совпадает с фактическим количеством операций в 1 секунду!

И вот почему:

1) для выполнения многих математических операций процессору требуется несколько тактов,

2) конкретное количество операций зависит от типа процессора (чем выше тип, тем меньше требуется количество тактов на выполнение операций),

3) компоненты физической схемы компьютера влияют на скорость выполнения,

4) быстродействие в основном определяется тактовой частотой процессора, чем она выше, тем больше скорость выполнения операций в 1 секунду!

4. Тактовая частота (быстродействие) — процессора или такт ядра процессора — промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всех операций процессора. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота, измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду).

Выполнение различных элементарных операций может занимать от долей такта до многих тактов в зависимости от команды и процессора. Общая тенденция заключается в уменьшении количества тактов, затрачиваемых на выполнение элементарных операций.

5. Объем кэш-памяти, которая имеет два уровня: L1 – память 1-го уровня, находящаяся внутри основной микросхемы микропроцессора и работающая всегда на полной частоте микропроцессора; L2 – память 2-го уровня, кристалл, размещаемый на плате микропроцессора и связанный с ядром внутренней микропроцессорной шиной, может работать на полной или половинной частоте микропроцессора.

6. Архитектура МП. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.

Микроархитектура микропроцессора – это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

Макроархитектура – это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Исследование регистров

Лабораторная работа выполняется с помощью учебного лабораторного стенда LESO2.

1 Цель работы

Целью работы является изучение принципа работы схем триггерных регистров и приобретение практических навыков в выполнении микроопераций на регистрах в статическом режиме.

2 Краткие теоретические сведения

Регистры предназначены для хранения и преобразования многоразрядных двоичных чисел. Для запоминания отдельных разрядов числа могут применяться триггеры различных типов. Одиночный триггер можно считать одноразрядным регистром.

Занесение информации в регистр называется операцией записи. Операция выдачи информации из регистра – считывание.

Перед записью информации в регистр, его необходимо обнулить.

Классификация регистров:

  1. по способу ввода/вывода информации:
  • параллельные (регистры хранения) – информация вводится и выводится одновременно по всем разрядам;
  • последовательные (регистры сдвига) – информация бит за битом «проталкивается» через регистр и выводится также последовательно;
  • комбинированные – параллельный ввод и последовательный вывод (и наоборот).
  1. по способу представления информации:
  • однофазные – информация представляется в прямом или обратном (инверсном) виде;
  • парафазные – информация представляется и в прямом, и в обратном виде.

2.1 Параллельный регистр

Параллельные регистры осуществляют прием и выдачу информации в параллельном коде, а это значит, что для передачи каждого разряда используется отдельная линия.

Для записи информации в регистр на его входных выводах (D0-D3) нужно установить логические уровни, после чего на вход синхронизации (C) подать разрешающий импульс — логическую единицу. После этого на выходах Q0-Q3 появится записанное слово. Регистры запоминают входные сигналы только в момент времени, определяемый сигналом синхронизации.

Рисунок 2.1 – Условно-графическое обозначение параллельного регистра Рисунок 2.2 – Схема параллельного регистра

2.1 Последовательные регистры

Кроме параллельного соединения триггеров для построения регистров используется последовательное соединение этих элементов.

Читать еще:  Electrolux gcb 24 basic x fi инструкция

Последовательный регистр (регистр сдвига) обычно служит для преобразования последовательного кода в параллельный и наоборот. Применение последовательного кода связано с необходимостью передачи большого количества двоичной информации по ограниченному количеству соединительных линий. При параллельной передаче разрядов требуется большое количество соединительных проводников. Если двоичные разряды последовательно бит за битом передавать по одному проводнику, то можно значительно сократить размеры соединительных линий на плате (и размеры корпусов микросхем).

Принципиальная схема последовательного регистра, собранного на основе D-триггеров и позволяющего осуществить преобразование последовательного кода в параллельный, приведена на рисунке 2.3.

Рассмотрим работу этого регистра. Можно предположить, что в начале все триггеры регистра находятся в состоянии логического нуля, т.е. Q0=0, Q1=0, Q2=0, Q3=0. Если на входе D-триггера Т1 имеет место логический 0, то поступление синхроимпульсов на входы «С» триггеров не меняет их состояния.

Рисунок 2.3 – Схема последовательного регистра

Как следует из рисунка 2.3, синхроимпульсы поступают на соответствующие входы всех триггеров регистра одновременно и записывают в них то, что имеет место на их информационных входах. На информационных входах триггеров Т2, Т3, Т4 – уровни логического «0», т.к. информационные входы последующих триггеров соединены с выходами предыдущих триггеров, находящихся в состоянии логического «0», а на вход «D» первого триггера, по условию примера, подается «0» из внешнего источника информации. При подаче на вход «D» первого триггера «1», с приходом первого синхроимпульса, в этот триггер запишется «1», а в остальные триггеры – «0», т.к. к моменту поступления фронта синхроимпульса на выходе триггера Т1 ещё присутствовал логический «0». Таким образом, в триггер Т1 записывается та информация (тот бит), которая была на его входе «D в момент поступления фронта синхроимпульса и т.д.

При поступлении второго синхроимпульса логическая «1» с выхода первого триггера, запишется во второй триггер, и в результате происходит сдвиг первоначально записанной «1» с триггера Т1 в триггер Т2, из триггера Т2 в триггер Т3 и т.д. Таким образом, производится последовательный сдвиг поступающей на вход регистра информации (в последовательном коде) на один разряд вправо в каждом такте синхроимпульсов.

После поступления четырёх синхроимпульсов регистр оказывается полностью заполненным разрядами числа, вводимого через последовательный ввод «D». В течение следующих четырёх синхроимпульсов производится последовательный поразрядный вывод из регистра записанного числа, после чего регистр оказывается полностью очищенным (регистр окажется полностью очищенным только при условии подачи на его вход уровня «0» в режиме вывода записанного числа).

Рисунок 2.4 – Временные диаграммы, поясняющие работу регистра сдвига

3 Задание к работе

3.1 Исследовать параллельный регистр

Сконфигурировать ПЛИС в соответствии с рисунком 3.1.

Рисунок 3.1 – Схема 4-х битного параллельного регистра

Записать целые десятичные числа от 0 до 15 в двоичной системе счисления в регистр и считать их. Заполнить таблицу 3.1.

Таблица 3.1 – Коды, записанные в параллельный регистр

3 Разрядность регистра это

Флаг трассировки
(Trace Flag)

Предназначен для организации пошаговой работы микропроцессора.

1 ≈ микропроцессор генерирует прерывание с номером 1 после выполнения каждой машинной команды. Может использоваться при отладке программ, в частности отладчиками;

0 ≈ обычная работа

Флаг прерывания
(Interrupt enable Flag)

Предназначен для разрешения или запрещения (маскирования) аппаратных прерываний (прерываний по входу INTR).

1 ≈ аппаратные прерывания разрешены;

0 ≈ аппаратные прерывания запрещены

Флаг возобновления
(Resume Flag)

Используется при обработке прерываний от регистров отладки.

Флаг виртуального
(Virtual 8086 Mode)

Признак работы микропроцессора в режиме виртуального 8086.

1 ≈ процессор работает в режиме виртуального 8086;

0 ≈ процессор работает в реальном или защищенном режиме

Флаг контроля выравнивания
(Alignment Check)

Предназначен для разрешения контроля выравнивания при обращениях к памяти. Используется совместно с битом am в системном регистре cr0. К примеру, Pentium разрешает размещать команды и данные с любого адреса. Если требуется контролировать выравнивание данных и команд по адресам кратным 2 или 4, то установка данных битов приведет к тому, что все обращения по некратным адресам будут возбуждать исключительную ситуацию

eip/ip (Instraction Pointer register) ≈ регистр — указатель команд .

Регистр eip/ip имеет разрядность 32/16 бит и содержит смещение следующей подлежащей выполнению команды относительно содержимого сегментного регистра cs в текущем сегменте команд. Этот регистр непосредственно недоступен программисту, но загрузка и изменение его значения производятся различными командами управления, к которым относятся команды условных и безусловных переходов, вызова процедур и возврата из процедур. Возникновение прерываний также приводит к модификации регистра eip/ip.

Регистры сопроцессора x 87

Сопроцессор ( FPU ) предназначен для выполнения операций над вещественными числами. С программной точки зрения сопроцессор содержит блок регистров данных, регистр управления и группу регистров состояния и указателей. Восемь регистров данных разрядностью 80 бит организованы в стек. Номер регистра, являющегося текущей вершиной стека, хранится в специальном поле регистра состояния (указателе вершины стека). Операция push уменьшает значение указателя на 1 и помещает в стек данные в регистр, являющийся новой вершиной стека. Операция pop записывает данные с вершины стека в память или регистр и увеличивает указатель на 1. Инструкции адресуют регистры либо явно, либо неявно. Неявная адресация подразумевает операнд, находящийся на вершине стека. Явная адресация подразумевает указание смещения регистра относительно вершины стека — st ( i ).

Регистры данных FPU (арифметический стек)

Регистры MMX / 3DNow!

MMX было первым расширением, реализующим технологию SIMD (Single Instruction — Multiple Data). Основная идея SIMD заключается в одновременной обработке нескольких элементов данных одной операцией. Расширение MMX использует новые типы упакованных 64-битные целочисленных данных:

— 8 упакованных байт ( Packed byte );

— 4 упакованных слова ( Packed word );

— 2 упакованных двойных слова ( Packed double word );

— 1 учетверенное слово ( Quad word );

Эти типы данных могут специальным образом обрабатываться в 64-битных регистрах MM 0- MM 7, представляющих собой младшие биты стека 80-битных регистров FPU . Каждая инструкция MMX выполняет действие сразу над всем комплектом операндов (8, 4, 2 или 1), размещенных в адресуемых регистрах. Как и регистры FPU , эти регистры не могут использоваться для адресации памяти. Совпадение регистров MMX и FPU накладывает ограничение на чередование кодов FPU и MMX . В отличие от стека FPU регистры MMX адресуются не с помощью стека, а физически (по своим физическим номерам).

Технология 3 DNow !, разработанная AMD , расширяет возможности MMX . Она позволяет оперировать с новым типом данных — парой упакованных вещественных чисел одинарной точности. Эти числа занимают по двойному слову (32 бита) в 64-битных регистрах MMX .

Расширение 3 DNow ! работает с упакованными данными в FP -формате с одинарной точностью, а также упакованными 8 байт, 4 слова, 2 двойных слова и 64-битными целыми числами, размещая их в младших 64 битах регистров FPU / MMX .

Начиная с Pentium III , Intel использует в своих процессорах новое потоковое расширение SSE ( Streaming SIMD Extension ). Оно реализуется дополнительным независимым блоком, имеющим восемь 128-битных регистров, названных XMM 0- XMM 7, и регистр состояния/управления MXCSR . В каждый из регистров XMM помещаются четыре числа в формате с плавающей точкой одинарной точности. Блок позволяет выполнять векторные (пакетные) и скалярные инструкции. Векторные инструкции реализуют операции сразу над четырьмя комплектами операндов. Скалярные инструкции работают только с одним комплектом операндов — младшим 32-битным словом. При выполнении инструкций XMM традиционное оборудование FPU / MMX не используется, что позволяет эффективно смешивать инструкции MMX с инструкциями с плавающей точкой.

Читать еще:  Pc120 datasheet на русском

Кроме инструкций с новым блоком XMM в расширение SSE входят и дополнительные целочисленные инструкции с регистрами MMX , а также инструкции управления кэшированием.

В процессоре Pentium 4 набор инструкций получил новое расширение — SSE 2, в основном касающееся добавления новых типов 128-битных типов данных для блока XMM :

— упакованная пара вещественных чисел двойной точности;

— упакованные целые числа: 16 байт, 8 слов, 4 двойных слова или пара учетверенных слов.

В процессор введены новые функции целочисленной арифметики, 128-разрядные для регистров XMM и такие же 64-разрядные для регистров MMX ; ряд старых инструкций MMX распространили на XMM (в 128-битном варианте); добавлены инструкции преобразования для новых форматов данных, а также расширены возможности «перемешивания» данных в блоке XMM . Кроме того, расширена поддержка управления кэшированием и порядком исполнения операций с памятью.

Регистры архитектуры x86-64 (AMD64)

Выпущенные недавно фирмой AMD новые процессоры Athlon 64 и Opteron имеют архитектуру x 86-64, которая в отличие от архитектуры x 86 является полностью 64-битной. Она естественным образом расширяет регистры общего назначения x 86 до 64 битов и увеличивает их количество. Также удваивается число регистров XMM . Регистры FPU / MMX остаются без изменений.

Регистры микропроцессоров, их виды и назначение

Общие сведения.

При составлении программ в первую очередь необходимо

знать, какие из регистров микропроцессора являются программно–доступными регистрами, в которых можно хранить подлежащие обработке данные (операн­ды), адреса и управляющие сигналы (команды). Совокупность программно–до­ступных регистров образуют регистровую модель микропроцессора. Адресация регистровой области процессора и быстрый доступ к ней обеспечивают создание эффективно исполняемых программ.

В регистровой модели современных процессоров обычно выделяют следу­ющие группы регистров:

● регистры, используемые при выполнении прикладных программ. К ним относят:

• основные функциональные регистры (регистры общего назначения; ука­затель команд, или программный счетчик; сегментные регистры; регистр флагов, или слова состояния);

обработки чисел с плавающей точкой (регистры данных, тегов, состояния, управления, регистры–указатели команды и операнда);

обработки пакетов чисел с плавающей точкой (регист­ры пакетов данных и регистр управления–состояния);

системные регистры (регистры управления режимом, регистры системных адресов, регистры отладки);

служебные (модельно–специфические) регистры, которые используются в про­цессе отладки систем, содержат информацию о процессе выполнения про­граммы (число декодированных команд, полученных запросов прерывания, число загрузок в кэш–память и т. п.), обеспечивают различные режимы рабо­ты кэш–памяти при обращении к определенным областям основной памяти

О неоднородности регистров.

Регистровая область памяти микропроцессора (

— регистровый сегмент) представляет собой набор неоднородных по возможности доступа и по выполняемым функциям регистров. Например, в рас­смотренном выше 8–разрядном процессоре:

● регистр команд является неадресуемым регистром и предназначен только для приема первого байта (кода команды) из памяти;

адресуемые регистры В и С могут быть использованы для хранения одного байта данных или 16–разрядного адреса (в паре);

указатель стека, представляющий собой 16–разрядный регистр, использует­ся для доступа к стеку путем явной и неявной (с помощью специальных ко­манд

программный счетчик, или указатель команд, выполняет строго определен­ные функции и не может быть использован для хранения 16–разрядных опе­рандов.

Функциональная неоднородность области

процессора проявляется в специализации регистров. В зависимости от выполняемых функций можно вы­делить три группы регистров:

регистры данных, используемые в операциях АЛУ в качестве источника и приемника операндов;

адресные регистры, или указатели, предназначенные для формирования ад­ресов данных и команд;

специальные регистры, служащие для индикации текущего состояния про­цессора и управления режимами его работы.

Функциональная специализация затрудняет программирование (из–за необхо­димости учета организации регистров), однако позволяет создать быстро испол­няемую программу с меньшим требуемым объемом памяти для ее хранения.

Регистры обозначаются латинскими буквами, используемыми для символи­ческого кодирования и отражающими назначение регистра.

Среди регистров данных важное место занимает аккуму­лятор А (

), который выполняет функции временного хранения исход­ных операндов и результатов операций арифметическо–логических устройств (АЛУ). Интенсивное использование аккумулятора и связанное с ним большинство команд арифметической и логической обработки операндов способствует сниже­нию загруженности шины данных, упрощению адресации, повышению быстро­действия процессора. В системах команд микропроцессора выделяются опера­ции с аккумулятором. Поэтому ссылка на аккумулятор при адресации, как прави­ло, производится неявно с помощью кода операции. Неявная адресация позволя­ет не указывать в командах месторасположение одного из операндов и (или) результата операции, что уменьшает длину их кода. В составе микропроцессора может быть не один, а два аккумулятора (например, в МС6809). К регистрам данных относятся явно адресуемые рабочие регистры

1, …., используемые как сверхскоростные регистровые ОЗУ.

Рабочие регистры могут использоваться в операциях совместно с аккумулятором. Некоторые из них могут совмещать функцию хранения данных с функцией адресации. Для образования полноразмерного адреса регистры данных объединяются в пары.

В процессорах, предназначенных для работы в реальном времени, могут быть предусмотрены не один, а два или даже четыре (например, в некоторых микро­контроллерах) набора рабочих регистров. Один из регистров резервируется для системных целей или обработки прерываний, а остальные — для прикладных задач пользователя. В каждый момент времени доступен только один набор ра­бочих регистров, выбираемый специальным указателем.

К регистрам данных также относятся рассматриваемые ниже регистры общего назначения, которые совмещают функции хранения данных и адресов.

Среди регистров, на которые возложена функция адре­сации, следует выделить:

), или указатель инструкций–команд (

), хранящий адрес следующей команды выпол­няемой программы. Его разрядность обычно соответствует числу линий ад­ресной шины. При выполнении программы с последовательно возрастающи­ми адресами команд содержимое

увеличивается на 1 или 2 для указания следующего байта или слова. Увеличение содержимого счетчика происходит автоматически сразу после начала выполнения команды. Изменение после­довательной выборки команд из ячеек памяти осуществляется путем загруз­ки программного счетчика адресом требуемой ячейки. Такая ситуация возни­кает, например:

• при выполнении команд условных и безусловных переходов;

• при инициализации микропроцессора путем сброса;

• при обслуживании запросов на прерывание;

используемый для обращений к систем­ному стеку. Стек представляет собой область памяти, предназначенную для хранения адресов возврата и состояний процессора (содержимого регист­ров) при вызове подпрограмм и обслуживании прерываний. Доступ к стеку организован по принципу «последним пришел — первым ушел» (

т. е. в него можно только последовательно добавлять (втал­кивать) или извлекать (выталкивать) элементы данных. Типовой стек, приме­няемый в большинстве процессоров, заполняется в сторону уменьшения ад­ресов.

всегда показывает на последнюю заполненную ячейку, называемую вершиной стека (

Поэтому при операции за­писи (

) в стек элемента данных сначала содержимое указателя

уменьшается на 1 или 2 в зависимости от длины элемента (байт, два байта), формируя адрес ячейки, в которую затем помещается элемент. При операции считывания (

) сначала элемент данных извлекается из стека, после чего содержимое указателя

увеличивается на 1 или 2.

Принцип взаимодействия указателя

со стеком проиллюстрирован на примере записи в стек и считывания из него четырех однобайтных элементов (рис. 2.4.1, а).

При операциях со стеком значение указателя

непрерывно меняется, поэтому применять его в качестве точки отсчета при доступе к хранящимся в стеке данным вызывает определенные трудности. Поэтому в ряде случаев, например, при хранении в стеке локальных переменных или при обмене па­раметрами между вызываемой и вызывающей процедурой (подпрограммой), используется указатель кадра (

) — специально зарезерви­рованный адресный регистр. Регистр

Читать еще:  Podelki doma ru из природного материала

, указывающий на начало области па­раметров в стеке (рис. 2.4.1, б), принадлежит к классу базовых регистров. В 16–разрядных процессорах указателем кадра служит индексный регистр ВХ;

регистры, предназначенные для хранения адресов обращения к основной па­мяти. Такие регистры, называемые указательными или индексными, позволя­ют сократить размер кода (программы). К ним следует отнести:

• регистры косвенного адреса (

), содержащие непосред­ственно адрес операнда;

), хранящие начальные (базовые) адреса массивов и записей;

индексные регистры I или X (

), содержимое которых является относи­тельным (смещенным) адресом операнда;

• регистры автоинкрементной и автодекрементной адресации, автоматиче­ски увеличивающие или уменьшающие свое содержимое после выполне­ния операции;

• регистры расширения адресного пространства (до 1М байт).

К специальным регистрам следует отнести регистр флагов (

), или регистр слова состояния программы (

а также ряд регистров, используемых в сопроцессорах и микроконтроллерах.

На регистр флагов возлагается функция хранения признаков. С каждым при­знаком связывается одноразрядная переменная (бит), называемая флагом (флажком). Регистр флагов содержит:

биты признаков состояния процессора. Обычно эти признаки формируются в АЛУ после выполнения операции и характеризуют ее результат;

● биты управления и системных признаков, которые устанавливаются операци­онной системой (некоторые пользователем) и задают режим процессора при организации ввода–вывода данных, обслуживании прерываний и исключений, решении последовательности вызываемых задач и реализации ряда других процедур.

Упаковка всех флагов в одно слово и хранение в регистре дает возможность их быстрой пересылки в память с последующим восстановлением, например, при обслуживании запросов на прерывание.

Ниже приведены обозначение, название и назначение флагов признаков состояния, а также показан принцип формирования некоторых флагов из отдельных бит

–разрядных операндов вида

, которые могут быть как исходным операндом, так и результатом выполненной операции:

Как определить разрядность процессора — 32 или 64?

Разрядностью (или битностью) центрального процессора (ЦП) называется количество бит, которые ЦП может обрабатывать за одну команду. Разрядность определяет количество бит, отводимых хранение одной ячейки данных. То есть, если архитектура вашего процессора, например, 32 битная, то он может работать с числами, которые представлены в двоичном коде из 32 бит, причём обрабатывать эти числа он может за одну команду.

Таким же образом (за одну команду) могут обрабатываться данные и меньшей разрядности, просто их старшие биты будут игнорироваться. Современные ЦП могут работать c 8-ми, 16-ти, 32-х и 64-х разрядными типами данных. Все использующиеся сейчас ЦП в компьютерах либо 32, либо 64 разрядные.

Часто, читая описания ЦП, можно встретить обозначение x86 — это значит, что мы имеем дело с 32 битной архитектурой. Если же встречается надпись х64 – то можно сказать, что данный ЦП обладает битностью, равной 64.

Важно! Часто битность ЦП ошибочно принимается за основу при определении максимального объёма памяти, к которому он может обращаться. Это, естественно, не так. Шины адреса и данных практически любого ЦП имеют разную битность и никак не влияют друг на друга.

Значение битности ЦП играет не последнюю роль для пользователей, поскольку битности операционной системы (ОС) и процессора, которые используются друг с другом, должны совпадать. Однако, здесь работает принцип обратной совместимости: на 64 разрядный ЦП может быть установлена операционная система как 32 так и 64 разрядная.

Версия операционной системы в данном случае не играет роли: например, все ОС Windows или Linux, уже начиная с появления первых 64 разрядных ЦП имеют как 32 битные так и 64 битные сборки. То есть, существуют все версии Windows (от XP до 10-й), имеющие как 64 так и 32 битную среду.

Важно! Установить на ЦП семейств х86 ОС, в названии которой фигурирует «х64» невозможно! Мало того, невозможно запускать исполняемые файлы для 64 битных ЦП на 32 битных ОС.

Именно поэтому определение того, какие именно (32 или 64 разрядные) данные используются ЦП весьма важно. Часто от этого зависит работоспособность достаточно больших групп пользователей, использующих одинаковое программное обеспечение.

В данной статье будет рассмотрено, как узнать разрядность процессора при помощи различных способов.

Определение разрядности процессора

Существует множество способов, как определить разрядность процессора. Посмотреть информацию о ней можно либо при помощи программных средств, либо средств BIOS; в крайнем случае, можно просто увидеть маркировку ЦП и уже по ней определить, сколько же бит отводится на обработку данных. Иногда эту информацию получить совсем просто: например, если количество ядер ЦП больше одного, то этот ЦП – 64 разрядный.

Через командную строку

Один из самых эффективных способов, как определить разрядность процессора без использования дополнительных средств. Для его реализации следует запустить командную строку – открыть в меню «Пуск» пункт «Выполнить» (или нажать Win+R на клавиатуре) и в появившемся окне набрать команду «cmd»,после чего нажать «Ввод».

Откроется консоль командного процессора. В ней следует ввести команду «systeminfo». Результатом её выполнения будет длинный перечень параметров системы. Интересующий нас пункт называется «Процессор(ы):» В нём будет написано название модели ЦП. И обязательно указана его битность (либо цифрами 32 или 64, либо надписями «х86» или «х64»).

Через свойства компьютера

Можно определить, какую разрядность поддерживает процессор, посмотрев свойства системы.

Один из способов сделать это – войти в параметр «Система» панели управления и там, в разделе «Тип системы» можно будет увидеть её разрядность. Если она равна 64, то и ЦП тоже 64 битный.

Однако, как уже было сказано ранее, поскольку на 64 разрядный ЦП может быть поставлена 32 разрядная система, необходимо будет уточнить тип используемого ЦП. Для этого следует зайти в «Диспетчер устройств», ссылка на который есть на той же странице, в «Устройствах» выбрать ЦП и открыть в его свойствах вкладку «Сведения».

В этой вкладке интересующий нас параметр называется «ИД оборудования». В нём будет указан тип используемого процессора – 64 или 32 разрядный.

Альтернативой является исследование свойств устройства, называемого в Диспетчере устройств «Компьютер». В нём может содержаться описание применяемого типа ПК с указанием его битности.

Аналогично свойствам процессора, следует зайти в свойства компьютера и во вкладке «Сведения» посмотреть описание устройства. Параметр может также называться «Выводимое имя». В любом случае, в нём будет присутствовать либо надпись «х86», либо «х64», что и будет соответствовать битности используемого ЦП в 32 или 64 соответственно.

Узнать разрядность через интернет

Для этого достаточно набрать в строке поиска фразу «узнать разрядность онлайн». Первые 5-10 результатов поиска дадут ссылки на сайты, определяющие этот параметр. После этого следует перейти на этот сайт и активный контент автоматически опознает количество разрядов ЦП и версию ОС.

Важно! Исполнение активных компонентов может быть заблокировано браузером и в этом случае определить интересующий параметр не получится. Для этого следует разрешить выполнение активного содержимого на странице.

Через BIOS

Самый простой способ, не требующий наличия программного обеспечения вообще. При загрузке ПК следует войти в BIOS, нажав F2 или Del. Далее следует выбрать раздел «System Settings», «Main» или «CPU Settings» – в зависимости от производителя BIOS он может называться по-разному, и посмотреть значение параметра «Processor Type». В нём будет указана фирма производитель, модель ЦП, его частота и разрядность.

Ссылка на основную публикацию
Adblock
detector